VN TECHNOLOGIES    Home About Us Contact

Project Details

Project Title

Hierarchical Prediction and Adversarial Learning For Conditional Response Generation

Abstract

There are a variety of underlying factors influencing what and how people communicate in their daily life. The ability to capture and utilize these factors enables the conversational systems to generate favorable responses and set up amicable connections with users. In this work, we investigate two major factors in response generation, i.e., emotion and intention. To explore the dependency between them, we develop a hierarchical variational model that predicts in sequence the emotion and intention to be conveyed in a response. The response can then be generated word-by-word based on the predictions. We also apply a novel variable-level adversarial learning to facilitate model training. The experimental results demonstrate the effectiveness of the proposed model as well as the novel adversarial objective. The hypothesis that emotion shapes human communication behavior is also validated.

Branch: CSE     Domain: Data Mining

Developed In: Java